STEREOCHEMISTRY OF THE REACTIONS OF CYANOHYDRINS OF SUBSTITUTED 4-PIPERIDONES WITH AMMONIA AND AMINES. SYNTHESIS AND STRUCTURE OF SUBSTITUTED 4-AMINO-, 4-METHYLAMINO-, AND 4-DIMETHYLAMINO-4-CYANOPIPERIDINES

B. V. Unkovskii, M. Yu. D'yakov, T. D. Sokolova, V. B. Rozhnov, and G. V. Cherkaev

The action of ammonia, methylamine, or dimethylamine on substituted 4-hydroxy-4-cyanopiperidines in a modified Strecker synthesis gave mixtures of stereoisomers of the corresponding 4-amino-, 4-methylamino- and 4-dimethylamino-4-cyanopiperidine. ¹H and ¹³C NMR spectroscopy was used to determine the structure of these products. Unusual stereocontrol was found for the reaction of methylamine and dimethylamine with cyanohydroxypiperidine with substituents at $C_{(2)}$ and $C_{(5)}$ in the ring.

In our preceding communication [1], we described the synthesis of substituted 4-cyano-4-hydroxypiperidines $I\alpha,\beta$ -IV α,β and established their structure. The stereochemistry of the addition of hydrogen cyanide to the carbonyl group of the starting ketones was elucidated.

In a continuation of that study, we investigated the direction of the reaction of cyanohydrins $I\alpha,\beta$ -IV α,β with ammonia and amines, leading to the corresponding substituted 4-amino-, 4-methylamino-, and 4-dimethylamino-4-cyanopiperidines V-XIV. Such compounds are intermediates in the synthesis of various biologically active compounds [2-5]. Syntheses have been reported for some piperidine α -aminonitriles [3,5,6] and their carbocyclic analogs [7-9], but the structure of these compounds was not established in the work of Vartanyan [3, 5] and Mousseron [9].

¹H and ¹³C NMR spectroscopy was used to establish the structure of aminonitriles V-XIV and elucidate the stereochemical control in a modified Strecker synthesis with cyanohydrins of substituted 4-piperidones. Using our previous data [1], starting cyanohydrins $I\alpha,\beta$ -IV α,β are mixtures of stereoisomers having equatorial orientation of all the methyl and phenyl substituents in the piperidine ring and different orientation of the cyano and hydroxyl groups.

Aminonitriles V-XIV were synthesized by the saturation of methanolic solutions of cyanohydrins $I_{\alpha,\beta}$ -IV $_{\alpha,\beta}$ by gaseous ammonia or amines at 0-5°C. The reaction is complete after 120-168 h [10]. This method gave quantitative yields of stereoisomer mixtures of previously described [5, 11] substituted 4-amino- and 4-methylamino-4-cyanopiperidines VIII $_{\alpha,\beta}$, XII $_{\alpha,\beta}$, and XIV $_{\beta}$ as well as previously unreported aminonitriles V $_{\alpha,\beta}$ -VII $_{\alpha,\beta}$, IX $_{\alpha,\beta}$, X $_{\alpha,\beta}$, XI $_{\beta}$, and XIII $_{\beta}$. On the other hand, the reaction of cyanohydrin II $_{\alpha,\beta}$ with dimethylamine leads to a single stereoisomer, dimethylaminonitrile XIII $_{\beta}$ in 10% yield, while the corresponding dimethylaminonitriles could not be obtained at all by this method from cyanohydrins I $_{\alpha,\beta}$ and II $_{\alpha,\beta}$.

In contrast to phenyl-substituted cyanohydrins $I_{\alpha,\beta}$ -III $_{\alpha,\beta}$, 4-cyano-4-hydroxy-1,2,5-trimethylpiperidine IV $_{\alpha,\beta}$ reacts readily with dimethylamine to give a single stereoisomer of dimethylaminonitrile, XIV $_{\beta}$ [10]. The properties and yields of previously unreported aminonitriles are given in Table 1.

M. V. Lomonosov Moscow State Institute of Fine Chemical Technology, 117571 Moscow; Institute of Chemical Sciences of the Kazakh Academy of Sciences, 480100 Alma-Ata. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1621-1627, December, 1992. Original article submitted October 30, 1990.

Compound	Chemical formula	<pre>mp, °C (from hexane)</pre>	nD ²⁰	Yield,	
V α, β	C14H19N3	-	1,5051	98	
νιβ	C14H19N3	9698	_	92	
viiβ	C15H21N3	7476		97	
ıxβ́	C15H21N3	99100	_	95	
Χ α,β	C15H21N3	-	1,5121	97	
ΧΙ β΄	C16H23N3	8183		80	
$\dot{x_{III}}\beta$	C16H23N3	*	1,5162	10	

TABLE 1. 4-Amino-, 4-Methylamino- and 4-Dimethylamino-4-cyanopiperidines

*Compound isolated by chromatography on a column packed with grade-II-activity alumina.

In light of the difficulty of separating and assigning the signals of the carbon atoms of the minor α -stereoisomers, the spectral parameters of only the β -isomers of aminonitriles V-XIV are given in Tables 2 and 3, while only the parameters for the signals of the ¹³C atoms of the cyano groups are given for isomers V α -X α and XII α ; the identification of these cyano group signals is not difficult.

The quantitative ratio of the stereoisomers of V-XIV in the reaction mixture was established relative to the intensities of identical carbon nuclei in the ¹³C NMR spectra with complete proton decoupling [12].

The orientation of the cyano group in the stereoisomers of aminonitriles V-XIV was determined using the width of the unresolved ¹³C NMR signals for the cyano groups in the monoresonance spectra. The width at half-height of the ¹³C NMR signal of the β -stereoisomers of aminonitriles V-XIV is 20-24 Hz in the monoresonance spectra, while the width of the cyano group signal of the α -isomers of V-X and XII is only 7-8 Hz (see Table 2). These findings indicate that the cyano group in the α -isomers are equatorial, while this group in the β -isomers is axial [13].

The orientation of the substituents at $C_{(2)}$, $C_{(3)}$, and $C_{(5)}$ of the piperidine ring was determined using the ¹H NMR data for the coupling constants of the vicinal protons, 2-, 3-, 5- and 6-H, in the piperidine ring.

Analysis of the ¹³C and ¹H NMR data of the aminonitriles synthesized showed that the reaction of the mixtures of cyanohydrin stereoisomers $I\alpha,\beta$ -IV α,β with ammonia leads to mixtures of the α - and β -stereoisomers of aminonitriles $V\alpha,\beta$ -VIII α,β , in which the fraction of the β -isomer with axial orientation of the cyano group and equatorial amino group is 80-90%. These reactions proceed through the formation of the corresponding 4-iminopiperidines (Scheme) [6, 7, 11, 14]. Thus, the ratio the α - and β -isomers of the aminonitrile reaction products hardly depends on the ratio of these isomers in the starting cyanohydrins. Our data indicate that the attack of the C=N bond of the imino group by the cyanide anion leads to the predominant formation of stereoisomers V β -VIII β with an axial cyano group. In this case, the orientation of the substituents in the piperidine ring is completely retained.

The reaction of cyanohydrins $I\alpha,\beta$, $II\alpha,\beta$, and $IV\alpha,\beta$ with methylamine proceeds analogously to give a mixture of stereoisomers of methylaminonitriles $IX\alpha,\beta$, $X\alpha,\beta$, and $XII\alpha,\beta$, in which the β -stereoisomers with an axial cyano group and equatorial orientation of the substituents at $C_{(2)}$ and $C_{(3)}$ or $C_{(5)}$ in the ring also predominant (80-90%). We have found that the reaction of cyanohydrin mixture $III\alpha,\beta$ with methylamine leads to the stereocontrolled formation of only one aminonitrile isomer, namely, XI β . The axial orientation of the cyano group in this compound was established using ¹³C NMR spectroscopy. The positions of the substituents at $C_{(2)}$ and $C_{(3)}$ was established using PMR spectroscopy, which the coupling constant of the vicinal 2-H and 3-H is 10.5 Hz, indicating the *trans*-diaxial orientation of these protons. Thus, the methyl group at $C_{(3)}$ and the phenyl group at $C_{(2)}$ are equatorial. We found an unusual steric course for this reaction since, as indicated by ¹H PMR spectroscopy, a change occurs in the configuration of the piperidine ring during the reaction such that the methyl group at $C_{(5)}$ becomes axial. This conclusion follows from the coupling constants of the $C_{(6)}H_2$ methylene group with 5-H (2.5 and 3.0 hz). Such ³J values correspond to equatorial orientation of 5-H. Thus, the methyl group at $C_{(5)}$ in XI β has axial orientation. The axial orientation of the methyl substituent at $C_{(5)}$ in the piperidine ring in dimethylaminonitriles XIII β and XIV β .

The starting configuration of the piperidine ring and axial orientation of the methyl group at $C_{(5)}$ in these cases is probably a consequence of the conversion of the corresponding cyanohydrins into aminonitriles XI β , XIII β , and XIV β through pathway B (see Scheme) and the corresponding enamines, namely, substituted 4-methylamino- or 4-dimethylamino-1,2,5,6-tetrahydropyridines [6, 14]. Thus, our data indicate that the formation of aminonitriles XI β , XIII β , XIII

and XIV β through pathway B and the corresponding enamines is probably a consequence of the structure of the starting cyanohydrins and amines. In these cases, the addition of hydrogen cyanide to the enamine double bond proceeds stereoselectively through *trans* addition to give single stereoisomers of XI β , XIII β , and XIV β with an axial cyano group and is accompanied by change in the orientation of the equatorial methyl group at C₍₅₎ in the ring and its shift to axial orientation.

Cyanohydrins $I\alpha,\beta$ and $III\alpha,\beta$ do not react with dimethylamine. This failure may be attributed to the steric hindrance produced by the substituents at $C_{(2)}$ and $C_{(5)}$ in the ring.

EXPERIMENTAL

The ¹H NMR spectra of the compounds studied were taken on a Bruker WM-250 spectrometer at 250 MHz for 2% solutions in CDCl₃. The chemical shifts of the protons were measured relative to HMDS as the internal standard. The ¹³C NMR spectra with complete hydrogen decoupling and the monoresonance spectra were taken on a Bruker WP-80 DC spectrometer at 20.15 MHz using CDCl₃ as the solvent.

Cyanohydrins $I\alpha,\beta$ -IV α,β were synthesized as described in our previous work [1], while V-XIV were synthesized as described by Urinovich [11]. The major indices of the products are given in Table 1. The elemental analysis data corresponded to the calculated values.

β/α stereoisomer	ratio		01/06	80/20	01/06	90/10	80/20	90/10	100/0	90/10	100/0	100/0	
d, ppm	NR ⁴		ļ	ļ	ļ	Į	29,7	29,7	29,0	29,5	38,7	38,4	
	$c \equiv N^{"}$ (α -isomer)	(0) O CC1	123,0 (8)	123,2 (7)	123,1 (7)	123,0 (7)	120,8 (7)	120,6 (7)	ļ	120,6 (7)	ļ	ļ	
	$c \equiv N^{"}$		121,0 (24)	121,1 (22)	119,6 (20)	121,1 (24)	118,9 (24)	118,9 (23)	120,0 (20)	118,2 (24)	118,0 (22)	117,8 (20)	ШУ Рас И
	с ₍₅₎ —сн ₃		ļ	12,7	13,0	12,5	ļ	12,7	12,0	12,4	11,5	11,4	
	C(3)CH3	c 	11,8	ļ	12,1	ļ	11,7	ļ	11,3	ļ	ļ	ļ	T and the L
	c(2)-R ¹ .		140,1	141,6	140,8	1,9,1	140,7	141,8	141,4	19,3	142,6	19,6	
	NCH ₃	-	43,1	42,5	42,9	41,3	42,3	42,8	43,8	41,3	40,3	41,9	
	C(6)	ç	57.3	59,9	59,7	60,1	51,5	60,1	58,5	61,2	59,0	59,3	
	c(s)	ł	30,7	40,0	39,6	39,9	32,4	38,6	32,8	38,3	34,2	34,1	
	C(4)		54,0	54,9	59,9	54,9	60,2	61,4	64,2	61,3	64,9	64,7	
	C(3)	4	45,0	46,5	46,2	45,6	43,7	42,6	38,8	41.7	37,9	36,8	
	C(2)		72,4	66,4	72,7	55,2	72,0	66,2	73,1	54,9	66,8	55,5	17
مساحد مساحد			>	١٨	IIV	ШЛ	ΙX	x	ХІ	пх	XIII	XIV	

and 4-Dimethylamino-4-cyanopiperidines	
4-Methylamino-,	
¹³ C NMR Spectral Parameters for Substituted 4-Amino-,	
TABLE 2.	

The signal for the α -carbon atom of the pnenyl group is given in the spectra for V-VII, IA-AI, and AIII. ***The halfwidth of the unresolved multiplet is given in parenthesis, Hz. ***In the spectra of IX-XI, $\mathbb{R}^4 = \mathbb{CH}_3$; the signals for the carbon atoms of the dimethylamino group are given for XIII and XIV

		31605e (31605e)	ļ	ļ	-	2,9	3,0 (2,5)		2,5 (2,5)	2,5 (2,5)
	J, Hz	3^{1645a} (3^{1665a})	12,0 (3,0)	12,0 (3,5)	12,0 (4,0)	13,1 (4,0)	1	12,5 (3,5)	ł	ļ
		3 _{12a3a}	12,0	10,5	12,0	10,3	10,5	12,5	12,0	12,5
		4-NH (NCH ₃)	1,66	1,66	1,58	1,67 (2,52)	1,66 (2,48)	1,63 (2,51)	(2,26)	(2,29)
		NCH ₃	2,03	1,95	2,26	1,95	1,92	2,29	1,98	2,24
		9H-9	3,22	2,88	2,72	3,02	2,90	2,74	2,89	2,73
and the second		6-1 la	2,34	2,33	2,09	2,49	2,74	2,20	2,69	2,57
	mq	S-H (S-CII ₃)	(1,14)	(1,16)	(1,05)	2,26	2,26	(1,03)	1,902,40*	2,022,25*
	ð, pr	5-H ₂ (5-CH ₃)	2,10	2,09	1,78	1,80	(1,27)	1,90	(1,24)	(1,09)
		3-H (3-CH3)	1,99	(0,78)	1,95	(0,72)	(0,72)	2,11	1,902,40*	1,84
		3-Ha	1,87	1,86	1,51	1,88	2,04	1,32	1,80	1.50
		2-CcH5 (2-CH3)	7,28	7,28	(1,11)	7,28	7,30	(1,12)	7,29	(1,12)
والمراجع المراجع الم		2-Hg	2,92	2,82	2,34	2,82	2,80	2,20	3,12	2,022,25*
	i c	punod	١٨	Ν	NIIV	XI	XI	ШΧ	ШХ	XIX

, and 4-Dimethylamino-4-cyanopiperidines	
4-Methylamino-,	
¹ , ¹ H NMR Spectral Parameters for Substituted 4-Amino-, ⁴	
TABLE 3	

4-Amino-1,3-dimethyl-2-phenyl-4-cyanopiperidine $(V\alpha,\beta)$. A solution of 4.61 g (0.02 mole) 4-hydroxy-1,3-dimethyl-2-phenyl-4-cyanopiperidine $I\alpha,\beta$ in 15 ml methanol was saturated with gaseous ammonia for 1 h with external cooling to 0-5°C. The reaction mixture was left with a calcium chloride tube at room temperature for five days and the solvent was removed in vacuum at ≤ 20 °C. The oily residue was dissolved in ether and dried over anhydrous magnesium sulfate. Ether was distilled off to give 4.5 g of a mixture of stereoisomeric aminonitriles $V\alpha,\beta$.

Products VI-XIV was obtained analogously by saturating cyanohydrins $I_{\alpha,\beta}$ -IV $_{\alpha,\beta}$ with ammonia, methylamine, or dimethylamine.

REFERENCES

- 1. B. V. Unkovskii, M. Yu. D'yakov, T. D. Sokolova, and V. B. Rozhnov, Khim. Geterotsikl. Soedin., No. 10, 1358 (1990).
- 2. E. S. Nikitskaya, G. S. Arutyunyan, M. D. Mashkovskii, and L. N. Yakhontov, Khim.-Farm. Zh., 8, No. 2, 16 (1974).
- 3. S. A. Vartanyan, A. O. Tosunyan, M. R. Bagdasaryan, and V. N. Madakyan, Arm. Khim. Zh., 27, 417 (1974).
- 4. B. Hermans, P. Daele, C. Westeringh, C. Eycken, I. Boey, and P. A. Janssen, J. Med. Chem., 9, 49 (1966).
- 5. S. A. Vartanyan, A. O. Tosunyan, and V. N. Madakyan, Arm. Khim. Zh., 25, 163 (1972).
- 6. E. S. Nikitskaya, L. M. Alekseeva, Yu. N. Sheinker, and L. N. Yakhontov, Khim. Geterotsikl. Soedin., No. 12, 1672 (1971).
- 7. H. S. Tager, J. Am. Chem. Soc., 94, 968 (1972).
- 8. I. T. Edward and C. Iitraugsri, Canad. J. Chem., 53, 3339 (1975).
- 9. M. Mousseron, I.-M. Kamenka, and M. R. Darvich, Bull. Soc. Chim. France, No. 1, 208 (1970).
- B. V. Unkovskii, Yu. S. Matyukhin, Yu. F. Malina, and E. M. Urinovich, Khim. Geterotsikl. Soedin., No. 9, 1224 (1973).
- 11. E. M. Urinovich, Conformational Studies on Stereoisomeric 4-Ethynyl- and 4-Cyano-4-piperidols and Some of Their Derivatives [in Russian], Chemical Sciences Candidate's Dissertation, Moscow (1967).
- 12. N. M. Sergeev, NMR Spectroscopy [in Russian], Moscow Univ., Moscow (1981), p. 279.
- V. B. Rozhnov, O. V. Agashkin, T. D. Sokolova, B. V. Unkovskii, and Yu. F. Malina, Zh. Org. Khim., 25, 1097 (1985).
- 14. Yu. M. Shafran, V. A. Bakulev, and V. S. Mokrushin, Usp. Khim., 58, 250 (1989).